Actin-based propulsive forces and myosin-II-based contractile forces in migrating Dictyostelium cells.
نویسندگان
چکیده
It has been suggested that myosin II exerts traction forces at the posterior ends and retracting pseudopodia of migrating cells, but there is no direct evidence. Here, using a combination of total internal reflection fluorescence (TIRF) microscopy and force microscopy with a high spatial resolution of approximately 400 nm, we simultaneously recorded GFP-myosin II dynamics and traction forces under migrating Dictyostelium cells. Accumulation of filamentous myosin II and a subsequent increase in traction forces were detected in pseudopodia just before retraction. In the case of motorless myosin II, traction forces did not increase after accumulation, suggesting that the source of the retraction force is the motor activity of accumulated myosin II. Simultaneous recording of F-actin and traction forces revealed that traction forces were exerted under spot-like regions where F-actin accumulated. Cells migrated in a direction counter to the sum of the force vectors exerted at each spot, suggesting that the stress spots act as scaffolds to transmit the propulsive forces at the leading edge generated by actin polymerization.
منابع مشابه
A mechanical function of myosin II in cell motility.
Myosin II mutant Dictyostelium amoebae crawl more slowly than wild-type cells. Thus, myosin II must contribute to amoeboid locomotion. We propose that contractile forces generated by myosin II help the cell's rear edge to detach from the substratum and retract, allowing the cell to continue forward. To test this hypothesis, we measured the speed of wild-type and myosin II null mutant Dictyostel...
متن کاملMolecular dynamics and forces of a motile cell simultaneously visualized by TIRF and force microscopies.
Cells must exert traction forces onto the substratum for continuous migration. Molecular dynamics such as actin polymerization at the front of the cell and myosin II accumulation at the rear should play important roles in the exertion of forces required for migration. Therefore, it is important to reveal the relationships between the traction forces and molecular dynamics. Traction forces can b...
متن کاملRelative distribution of actin, myosin I, and myosin II during the wound healing response of fibroblasts
Myosin I is present in Swiss 3T3 fibroblasts and its localization reflects a possible involvement in the extension and/or retraction of protrusions at the leading edge of locomoting cells and the transport of vesicles, but not in the contraction of stress fibers or transverse fibers. An affinity-purified polyclonal antibody to brush border myosin I colocalizes with a polypeptide of 120 kD in fi...
متن کاملTraction force microscopy in Dictyostelium reveals distinct roles for myosin II motor and actin-crosslinking activity in polarized cell movement.
Continuous cell movement requires the coordination of protrusive forces at the leading edge with contractile forces at the rear of the cell. Myosin II is required to generate the necessary contractile force to facilitate retraction; however, Dictyostelium cells that lack myosin II (mhcA-) are still motile. To directly investigate the role of myosin II in contractility we used a gelatin traction...
متن کاملActin stress fibre subtypes in mesenchymal-migrating cells
Mesenchymal cell migration is important for embryogenesis and tissue regeneration. In addition, it has been implicated in pathological conditions such as the dissemination of cancer cells. A characteristic of mesenchymal-migrating cells is the presence of actin stress fibres, which are thought to mediate myosin II-based contractility in close cooperation with associated focal adhesions. Myosin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 121 Pt 8 شماره
صفحات -
تاریخ انتشار 2008